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Abstract

We present a novel model for human action categoriza-

tion. A video sequence is represented as a collection of

spatial and spatial-temporal features by extracting static

and dynamic interest points. We propose a hierarchical

model that can be characterized as a constellation of bags-

of-features and that is able to combine both spatial and

spatial-temporal features. Given a novel video sequence,

the model is able to categorize human actions in a frame-

by-frame basis. We test the model on a publicly available

human action dataset [2] and show that our new method

performs well on the classification task. We also conducted

control experiments to show that the use of the proposed

mixture of hierarchical models improves the classification

performance over bag of feature models. An additional ex-

periment shows that using both dynamic and static features

provides a richer representation of human actions when

compared to the use of a single feature type, as demon-

strated by our evaluation in the classification task.

1. Introduction

It is of great practical and scientific interests to under-

stand articulated body motions, especially those of the hu-

man body. In computer vision, one intriguing problem is

to represent the different types of human motions with ef-

fective models. In this paper, we focus on the problem

of human motion categorization under uncontrolled cam-

era condition. In particular, we propose a generative model

that takes into account both static and dynamic features of

human motion. Our aim is to offer a generic solution to

both human motion and pose categorization via flexible yet

highly descriptive models.

Based on the recent works in human motion categoriza-

tion [2, 10, 14, 16], we make two key observations that will

in turn influence the design of our model. The first obser-

vation is based on the usage of different feature descriptors

to represent human body and/or human motion. The second

observation deals with the choice of the category model that

Figure 1. Recognizing human action classes: A sample frame

and a four part model for hand waving over imposed on the origi-

nal image. Static and dynamic features are shown, colored accord-

ing to their part membership.

uses such features for corresponding classification.

Using good features to describe pose and motion has

been widely researched in the past few years. Generally

speaking, there are three popular types of features: static

features based on edges and limb shapes [7, 11, 15]; dy-

namic features based on optical flows [7, 9, 18], and spatial-

temporal features that characterizes a space-time volume of

the data [2, 6, 8, 13]. Spatial-temporal features have shown

particular promise in motion understanding due to its rich

descriptive power [3, 14, 17]. On the other hand, to only

rely on such features means that one could only characterize

motions in videos. Our daily life experiences tell us, how-

ever, humans are very good at recognizing motion based on

a single gesture. Fanti et al. proposed in [10] that it is fruit-

ful to utilize a mixture of both static and dynamic features.

In their work, the dynamic features are limited to simple ve-

locity description. We therefore propose the hybrid usage of

static shape features as well as spatial-temporal features in

our framework.

Model representation and learning are critical for the ul-

timate success of any recognition framework. In human

motion recognition, most models are divided into either

discriminative models or generative models. For example,

based on the spatial-temporal cuboids, Dollar et al. [8]

applied an SVM classifier to learn the differences among

videos containing different human motions. Ramanan et al.

[15] recently proposed a Conditional Random Field model
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to estimate human poses. While discriminative frameworks

are often very successful in the classification results, they

suffer either the laborious training problem or a lack of true

understanding of the videos or images. In the CRF frame-

work, one needs to train the model by labeling by hand each

part of the human body. And in the SVM framework, the

model is not able to “describe” the actual motion of the per-

son. Some researchers, therefore, have proposed several

algorithms based on probabilistic graphical model frame-

works in action categorization/recognition. Song et al. [20]

and Fanti et al. [10] represent the human action model as

a triangulated graph. Boiman and Irani [3] recently pro-

pose to extract ensemble of local video patches to localize

irregular action behavior in videos. Dense sampling of the

patches is necessary in their approach and therefore the al-

gorithm is very time-consuming. It is not suitable for action

recognition purpose due to the large amount of video data

commonly presented in these settings.

For structured objects such as human bodies, it is im-

portant to model the mutual geometric relationship among

different parts. Constellation models offer such a solution

[10, 21]. Unfortunately due to the computational complex-

ity of the model, previous works can only use a very small

number of features (typically 4 to 6) or approximate the

connections by triangulation [10, 20]. Another approach

is to lose all the geometric information and consider “bag

of words” models. They have proven to be highly efficient

and effective in classifying objects [12, 19] and human mo-

tion [8, 14]. We propose here a method to exploit both the

geometric power of the constellation model as well as the

richness of the “bag of words” model. We recognize the

computational limit of having a very small number of fully

connected parts in the constellation model. But instead of

applying it directly onto the image level features, we attach

a “bag of words” model to each part of the constellation

model. The overall representation embodies a hierarchi-

cal model that combines a constellation model of few parts

with bag of words models of a large and flexible number

of features (see Fig. 2). Our model is partly inspired by

a hierarchical model proposed by Bouchard and Triggs in

[4]. In their framework, they also use the idea of attach-

ing large number of features at the image level to a hand-

ful of intermediate level parts. The key difference between

our model and theirs is that our intermediate level parts

are fully connected whereas theirs are not, offering a much

richer constraint. In addition, we use a mixture of models

for our motion classes whereas it is not immediately clear

whether their framework could be easily extended to a mix-

ture model.

In summary, we show in this paper a hierarchical model

that learns different categories of human motion using a hy-

brid of spatial-temporal and static features. Our model can

be characterized as a constellation of bag of words. Our
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Figure 2. Hierarchical model for human actions: The proposed

model combines, in a hierarchical way, the geometric strength of

the constellation model with the larger number of features utilized

in the bag of keypoints models. The higher layer is a constellation

of P parts, each associated to a bag of features in the lower layer.

The parts are interrelated by a distribution of their relative posi-

tions. Additionally, each part defines a distribution of appearance

and position of features assigned to it.

results show that compared to previous works, our model

offers superior classification performances on a number of

large human motion datasets. In addition, it can do it either

on a video sequence or in individual frames.

2. Theoretical Framework

In the simplest version, our model is a two layered hierar-

chical model. The higher layer is close in spirit to the shape

term of the constellation model. It is composed by a set of P

parts whose position is represented by a Gaussian density of

their relative locations. Each of the Pp parts (p = 1 . . . P )

is connected to Np image features in the lower level, and is

associated to distributions of appearance and relative loca-

tion of the features assigned to it. In other words, the higher

layer is a constellation of parts, and each of these parts is

associated to a “bag of features” in the lower layer. Due to

its geometric constraints, this model is suitable to capture

similar body configurations or poses.

Following the observation that human actions are results

of sequences of poses, which arise from a few sets of sim-

ilar body configurations, we believe that a single action is

better represented as a multimodal distribution of shape and

appearance. To account for this multimodality, we use a

mixture of hierarchical models, where each component cor-

responds to a set of poses clustered together according to

their similarity.



2.1. The Hierarchical Model

Given a video frame I, we find a set of N observed fea-
tures w = {x,a}, where wi = {xi, ai} denotes position
xi and appearance ai information. We also suppose that
there is a known finite set Y of possible positions for the P
parts in the image. One can think of Y as pixel locations or
any arbitrary choice. We can compute the likelihood of the
observed data given an action model θ as the following:

p(w,Y|θ) =

ΩX
ω=1

X
h∈H

p(w,Y,h, ω|θ) (1)

=

ΩX
ω=1

X
h∈H

p(w,Y,h|ω, θ)p(ω|θ) (2)

=

ΩX
ω=1

"
πω

X
h∈H

p(w,Y,h|ω, θ)

#
(3)

where ω indicates the mixture component, we define πω =
p(ω|θ) such that

∑

ω πω = 1 and h is an indexing vari-
able which we call a hypothesis (similar to the constellation
model). If |Y| is the number of possible locations for the
P parts, then h is a vector of length P , where each element
is between 1 and |Y|. Additionally, we introduce the vari-
able m, which indicates an assignment of features to parts.
In particular, each m is a vector of N elements which can
take integer values on the interval [0, P ]. That means, each
feature can be assigned to the background (0) or to one of
the P parts (1 . . . P ). Marginalizing over m, we rewrite the
observed data likelihood as:

p(w,Y|θ) =

ΩX
ω=1

"
πω

X
h∈H

X
m∈M

p(w,Y,h,m|θω)

#
(4)

p(w,Y|θ) =

ΩX
ω=1

�
πω

X
h∈H

�
p(h|θω)p(Y|h, θω)X

m∈M

p(w|Y,m,h, θω)p(m|Y,h, θω)

��
(5)

Calculating the likelihood in Eq (5) requires to compute
O((P +1)N ) different assignments for each h. Considering
that |H| = |Y|P , we need to compute the probabilities of

O
(

(P + 1)N |Y|P
)

different combinations of hypothesis-
assignment. In order to make the model more computation-
ally tractable, we propose the following approximation:X
m∈M

p(w|Y,m,h, θω)p(m|Y,h, θω) ≈ p(w|Y,h,m
∗
, θω)

That is, we compute only one assignment per hypothesis.
If we assume that p(m|Y,h, θ) is uniform, then m

∗ is se-
lected such that:

m
∗ = arg max

m

p(w|Y,h,m, θ) (6)

Applying this to (5), the approximated observed data
likelihood is:

p(w,Y|θ) ≈

ΩX
ω=1

2664πω

X
h∈H

p(h|θω)p(Y|h, θω)| {z }
Part layer

p(w|Y,m
∗
,h, θω)| {z }

Local feature layer

3775 (7)

Part layer term: We represent the joint probability of
the position of the P parts in the model as a multivariate
gaussian distribution:

p(Y|h, θ) = N (YT(h)|µL,ΣL)

In order to obtain translation invariance, we map Y into

a translation invariance space, by constructing YT(h), a

2(P − 1) dimensional vector that contains the relative posi-

tions of (P − 1) parts with respect to the topmost part.

Local feature layer term: Given a part-to-feature as-

signment, each part P is instantiated as a set of image fea-

tures that carry appearance and location information. Thus,

each part is associated with an appearance distribution as

well as a relative position distribution of image features. We

adopt the bag-of-features assumption, where the observa-

tions wn ∈ I are conditionally independent given their par-

ent assignments in m. This assumption allows us to write

the likelihood of a set of observations w, given the possible

part locations Y, a hypothesis h, an assignment m and the

model parameters θ, as:

p(w|Y,h,m, θ) =
Y

wn∈I

p(wn|Y,h,mn, θ)

=
Y

wj∈bg

p(wj |θ0)
PY

p=1

Y
wi∈Pp

p(wi|Y, hp, θp)

=
Y

wj∈bg

p(xr
j |θX

0 )p(aj |θA
0 )

PY
p=1

Y
wi∈Pp

p(xr
i |Y, hp, θX

p )p(ai|θ
A
p )

(8)

where we define θX
p =

{

µ
X
p = 0,ΣX

p

}

to be the parame-

ters of a Gaussian distribution that determines the relative

position of the features that belong to the p-th parent. Note

that given a particular m, the position information xi of the

i-th image feature can be transformed to the relative loca-

tion, xr
i , of the feature to its assigned parent. Similarly,

θA
p are the parameters of a multinomial distribution that de-

scribe the appearance of the features assigned to the p-th

parent. In the same manner, we define θX
0

and θA
0

as para-

meters for the appearance and position distribution of fea-

tures assigned to the background. Note that the notations

wi ∈ Pp and wj ∈ bg indicate assignments that depend on

both h and m.

Additionally, the conditionally independence assump-

tion allows us to maximize p(wn|Y,h,mn, θω) with re-

spect to m for each wn independently. In other words, our
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Figure 3. Matching features (children) to parts (parents): The

weight of each link between a parent node Pp and a child node

wn is the probability of generating wn from the appearance

and position distributions assigned to Pp: p(wi|Y, hp, θp) =
p(xi|Y, hp, θX

p )p(ai|θ
A
p ). We also include a background node at

the parent level, to allow features to be assigned to the background.

task reduces to find the best parent for each child node wn

in the graph of Figure 3.

Note that from this procedure, it is possible for m
∗ to be

a feature to part assignment such that a part has no features

assigned to it. This allows the model to handle naturally

missing or occluded parts. An alternative to be explored is

to assign features to parts softly, instead of using the single

best parent for each child.

Approximated data likelihood: Assuming that the
prior probability of selecting a particular hypothesis h is
uniform, i.e. p(h|θ) = |H|−1, we can finally rewrite our
likelihood equation as:

p(w,Y|θ) ≈

1

|H|

ΩX
ω=1

"
πω

X
h∈H

N (YT(h)|µL,ΣL)p(w|Y,m
∗
,h, θω)

#
(9)

2.2. Learning

Learning consists of estimating the model parameters

for each action category. In the case of the mixture of

models, each action class has the set of parameters θω =
{

µL,ω,ΣL,ω,ΣX
p,ω, θA

p,ω, θX
0

, θA
0

}

for p = 1 . . . P and ω =

1 . . .Ω. To accomplish this purpose, we adopt an EM algo-

rithm.

Initialization: The convergence of the EM algorithm to

a sensible minimum depends greatly on the starting point.

In order to select a good initial point, we cluster video

frames from the training data into a number of clusters equal

to the number of mixture components. The clustering pro-

cedure is done by representing each video frame with a

histogram of features. Then, we select a small number of

frames from each resulting cluster and fit a 1-component

model to them. The output of this procedure is a set of ini-

tial parameters θold.

E-Step: Evaluate the responsibilities using the current

parameter values θold:

p(h, ω|w,Y, θ
old)

≈
πωp(Y|h, θold

ω )p(h|θold
ω )p(w|Y,h,m∗, θold

ω )

p(w,Y|θold)
(10)

M-Step: Calculate updated parameters θnew using the
current responsibilities:

θ
new = arg max

θ

X
h

p(h, ω|w,Y, θ
old) ln p(w,Y,h, ω|θ)

(11)

2.3. Recognition

Given a new video frame and the learnt models for each

action class, the task is to classify the new data as belong-

ing to one of the action models. Suppose that we have C

number of classes. We calculate the likelihood of observing

the image data given that it has been generated from each

class C. This produces a C-dimensional feature vector of

the input in the model space. We calculate these feature

vectors for each example in a validation set, and use them

to train a discriminative classifier. Therefore, a classifica-

tion decision is made by first calculating the likelihood of

the input according to each of the C action models, and

then categorizing this C-dimensional feature vector using

the discriminative classifier.

Additionally, decisions can be made over a range of

video frames by adopting a bag-of-frames strategy. First,

each frame is categorized independently, and assigns a vote

in favor of an action class. The complete video sequence is

classified to be from the category with the majority of the

votes.

3. The System

Image Features: We represent each video frame as a

set of detected patches w = {x,a}, where wi = {xi, ai},

i = 1 . . . N . The appearance information a is obtained by

assigning each patch a membership to a large dictionary of

codewords. We show now how these patches are obtained

and memberships assigned.

We adopt a rich representation by detecting static and

motion features. This allows the model to characterize a

larger number of human actions than when using motion

alone. Specifically, certain actions, such as hand waving in

[2], produce a small number of motion features since most

body parts remain static.

Static features are obtained by first computing an edge

map using Canny edge detector. A set of edge points is

sampled from the edge map, and a descriptor is obtained for

an image patch around each selected point by calculating its

shape context [1].



Motion features are obtained using the separable linear

filter method in [8]. Small video patches are extracted and

described by concatenating their gradients on space and

time directions.

Given the collection of detected static features from the

training images of all categories, we learn a codebook by the

employment of a k-means algorithm. Codewords are then

defined as the centers of the learnt clusters, and each static

patch is assigned to the closest codeword. A similar proce-

dure is performed to obtain a codebook of motion features,

and the corresponding memberships.

The employment of two different types of features re-

quires to adopt two different distributions of feature appear-

ance for each part. In particular, p(ai|θ
a
p) is actually mod-

eled as two multinomial distributions, one for static features

and other for motion features. Thus, given a particular fea-

ture, we use the appropriate appearance distribution when

calculating 8. Note that the proper distribution to use can

be determined unambiguously since the type of the feature

is always known.

Implementation Details: In our implementation, we de-

tect spatial features at each frame by sampling edge points

from the output of the Canny edge detector. The number of

samples is fixed to 100. Each sampled edge point is de-

scribed using shape context with 3 spatial and 8 angular

bins. The dimensionality of both descriptor types (static and

dynamic) is reduced using PCA. Consequently, we cluster

static and motion descriptors into codebooks of size 100.

The discriminative classifier described in section 2.3 is in-

stantiated by a Support Vector Machine. For this purpose,

we use a linear SVM trained with LIBSVM [5].

4. Experiments

We test our model using the human action dataset from

[2]. It contains 9 action classes performed by 9 different

subjects, some example frames are shown in figure 4. There

are 83 sequences in total, since each class contains 9 or 10

videos.

We adopt a leave-one-out scheme for evaluation, by tak-

ing videos of one subject as testing data, and randomly split-

ting the sequences from the remaining subjects into training

and validation sets. The training set is always composed by

sequences of 5 subjects, while the sequences of the remain-

ing 3 subjects are used for validation.

We train a 4 part model with 3 mixture components for

each action class. In order to illustrate the learnt models,

Fig. 6 shows an example frame from a jack sequence with

the corresponding action model component over imposed.

Parts are colored in blue, red, green and cyan, and repre-

sented as ellipses which illustrate the gaussian distribution

of the feature relative positions. Static features are repre-

sented by crosses and motion features by diamonds. Each

feature has been colored with the color of its correspond-

(a) bend (b) jack (c) jump

(d) pjump (e) run (f ) side

(g) walk (h) wave1 (i) wave2

Figure 4. Human actions dataset: Example frames from video

sequences in the dataset from [2]. The dataset contains 83 videos

from 9 different human action classes.

Figure 5. Feature detection: The first row contains example

frames from a training sequence. The edge maps shown in the

second row are obtained using the Canny edge detector. The third

row illustrates the spatial-temporal interest point detection. The

motion features are obtained using the method in [8]. The figure

is best viewed in color.

ing parent. Features in yellow and magenta were assigned

to the background. Further examples from all classes are

shown in Fig. 10.

We investigated the performance of our method in frame-

by-frame classification, as well as video classification using

the voting scheme presented above. The confusion tables

are shown in Fig. 7 and Fig. 8. When classifying entire se-

quences, our system can correctly categorize 72.8% of the

testing videos. Note that the confusions are reasonable in



Video Frame

Feature Layer

Part Layer

Figure 6. Action model over a testing frame: The figure shows

our hierarchical model imposed over a testing frame. Parts are

represented as ellipses, which illustrate the distribution of the rela-

tive position of their children features. Static features are drawn as

crosses, while motion features as diamonds. The color of the fea-

ture indicates the feature parent. Features in magenta and yellow

belong to the background. The figure is best viewed in color.

1.0 .00 .00 .00 .00 .00 .00 .00 .00

.00 1.0 .00 .00 .00 .00 .00 .00 .00

.00 .00 1.0 .00 .00 .00 .00 .00 .00

.22 .11 .11 .44 .11 .00 .00 .00 .00

.00 .00 .11 .22 .67 .00 .00 .00 .00

.00 .00 .00 .00 .00 .78 .00 .11 .11

.00 .00 .11 .00 .00 .11 .56 .11 .11

.00 .00 .00 .00 .00 .33 .11 .56 .00

.00 .00 .00 .00 .00 .11 .00 .33 .56

bend

pjump

jack

wave1

wave2

jump

run

side

walk

bend
pjum

p

jack
wave1

wave2

jum
p

run
side

walk

Figure 7. Video Classification: Horizontal lines are ground truth,

and vertical columns are predicted labels. The table summarizes

the result of 9 runs in a leave-one-out procedure. The system cor-

rectly classifies 72.8% of the testing sequences.

the sense that most of the time missclassification occurs be-

tween very similar motions, for instance there is confusion

between wave1, wave2 and jacks, as well as confusion be-

tween run, walk, side and jump (please refer to Fig. 4).

In order to evaluate the contribution of the hierarchical

model, as well as the use of dynamic and static features,

we perform several control experiments. For this purpose,

we randomly select one subject and use the corresponding

sequences as the testing set. The videos from the remaining

subjects are randomly split into training and validation sets.

.74 .15 .03 .04 .02 .01 .00 .00 .01

.21 .62 .06 .08 .00 .02 .00 .00 .00

.05 .11 .73 .02 .06 .00 .02 .01 .01

.21 .07 .08 .40 .22 .01 .01 .00 .01

.05 .02 .13 .22 .57 .00 .00 .00 .01

.07 .02 .00 .01 .00 .51 .10 .13 .15

.04 .02 .06 .01 .00 .19 .45 .09 .13

.05 .02 .00 .01 .00 .25 .12 .39 .15

.02 .02 .01 .00 .00 .24 .05 .20 .46

bend

pjump

jack

wave1

wave2

jump

run

side

walk

bend
pjum

p

jack
wave1

wave2

jum
p

run
side

walk

Figure 8. Frame-by-frame classification: Horizontal lines are

ground truth, and vertical columns are predicted labels. The ta-

bles are the average over 9 runs in a leave-one-out procedure. In

average, the algorithm assigns the correct label to 55.0% of the

testing frames.

We evaluate the contribution of the mixture of hierarchi-

cal models by comparing it to a one component hierarchi-

cal model and a bag of keypoints model. We believe that

a class of human action (e.g. walking) can be represented

by a small number of distinctive (static or dynamic) poses.

We have therefore chosen a mixture of models to repre-

sent each action. In order to show that this representation

is more powerful than a single component, we have trained

1-component models for each action class. Additionally, to

demonstrate that including geometric information is useful,

we train bag of keypoints models for each action class. For

this purpose each sequence is represented as a histogram

of static and dynamic features. The training examples are

kept in a database and new video frames are classified us-

ing a nearest neighbor procedure. The bar plot on the left

in Fig 9 shows the comparison of the performance of each

model under the described settings. The outcome of this ex-

periment supports the intuition that human actions contain

certain multimodality which can be better represented by a

mixture of hierarchical models. The inclusion of the con-

stellation layer and the geometric constraints that it encodes

is also useful, since ignoring the geometric arrangement of

features and adopting a bag of keypoints model produces

poorer classification results.

Finally, we also explore the contribution of each feature

type into the classification performance. We trained our

mixture of hierarchical models using static features only,

dynamic features only and also using both types of features.

The bar plot on the right in Fig 9 shows the comparison of

the performance of the model when using different types of

features. These results empirically support the intuition that

a combination of both static and motion features provide the

best representation for human actions. Additionally, the ex-

periment shows that if one is to choose a single feature type,

motion features are preferable; which is also intuitive in the

sense that motion features provides a richer representation
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Figure 9. Effect of model and features: The plot shows a per-

formance comparison of recognition accuracy under different set-

tings. Mixture indicates the use of a 3-component mixture model;

NoMixture indicates the use of a 1-component model; and Bag de-

notes a pure bag of keypoints model. On the left, the plot shows

that the employment of our new hierarchical model improves the

performance over the use of pure bag-of-features model. Also, us-

ing a mixture of models helps to account for the multimodality na-

ture of the action models, therefore better recognition is obtained

when compared to the 1-component model. On the right plot, the

results show that using a combination of static and motion fea-

tures provides the best description of the human actions, which

translates into the best recognition accuracy.

of dynamic events than static features.

The first reported classification results on this dataset ap-

peared on [2]. Their method achieved a classification error

rate of 0.39%. It is however, difficult to make a fair com-

parison. Their method requires a background substraction

procedure, global motion compensation, and it cannot take

classification decisions frame by frame. Please also note,

that our model is general in the sense that it aims to offer a

generic framework for human motion and pose categoriza-

tion.

5. Conclusions

In this paper, we presented a hierarchical model of shape

and appearance for human action categorization. The model

combines the strong shape representation of the constella-

tion model with the large number of features that utilizes the

bag-of-words model. Our constellation-of-bags-of-features

model is able to combine static and motion image features

in a principled way, as well as perform categorization in a

frame-by-frame basis.

Future directions include to adopt robust features that

help to account for more general camera motion and un-

constrained environments. We believe this model has the

potential to be able to characterize more complex motions

and configurations of the highly articulated human body.
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(a) (b) (c) (d)

Figure 10. Learnt action models: Each row illustrate a different action category: bend, jack, jump, p-jump, run, side, walk, wave1, wave2.

Column (a) shows example frames from the original sequence. (b)-(d) show the three mixture components for each action model. Static

features are represented by crosses and motion features by diamonds. Each image feature is colored according to its part membership.

Ellipses illustrate the variance of the position distributions for each part. The figure is best viewed in color.


